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Background Strictly convex norms

Strictly convex norms

Definition (Clarkson, 1936)
A norm ∥ ⋅ ∥ is called strictly convex if x = y whenever
∥x∥ = ∥y∥ = 1

2 ∥x + y∥.

Natural norms are usually not strictly convex, but often a space can be
given an equivalent strictly convex norm.

We concentrate on strictly convex dual norms on dual spaces.

Theorem (Šmulyan, 1940)
If ∥ ⋅ ∥ is a strictly convex dual norm on X ∗ then the predual ∥ ⋅ ∥ on X is
Gâteaux smooth.
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Background Characterizing strict convexity

Characterizing strict convexity

Question
Given a (dual) Banach space, does it admit a strictly convex (dual)
norm?

Yes if e.g. X is separable, reflexive (more generally weakly compactly
generated) or if X = L1(�).

No if e.g. X = ℓ c
∞(Γ), Γ uncountable.

Figures such as Day, Lindenstrauss, Mercourakis, Talagrand and
Haydon have considered aspects of this question.

But no general characterization, in terms of linear topological structure,
has emerged.
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Property (*) Definition and motivation for (*)

Definition and motivation for (∗)

Definition
A topological space X has (∗) if there are families Un, n ∈ ℕ, of open
sets, such that for any x , y ∈ X , there is n ∈ ℕ satisfying

1 {x , y} ∩
∪

Un is non-empty
2 {x , y} ∩ U is at most a singleton for all U ∈ Un.

Example

X = ℝ, Un = {open intervals of length n−1}.

Spaces having G�-diagonals have (∗).
There are many compact non-metrizable spaces having (∗).
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Property (*) Definition and motivation for (*)

Definition and motivation for (∗)

Proposition
If a dual Banach space X ∗ admits a strictly convex dual norm, then
(BX∗ ,w∗) has (∗).

Theorem
The space X ∗ admits a strictly convex dual norm if and only if
(BX∗ ,w∗) has (∗) with slices.

Question
To what extent can we do without the geometry, i.e. without slices?
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Property (*) (*) in context

Consequences of (∗)

We study C(K ) spaces because they form a universal class:
X ↪→ C(BX∗ ,w∗).

Theorem
If K is compact and scattered then C(K )∗ admits a strictly convex dual
norm if and only if K has (∗).

Theorem
If X has (∗) then X is fragmentable.
Countably compact spaces having (∗) are compact (generalizes
Chaber). In particular, !1 does not have (∗).
If L is locally compact and has (∗) then L ∪ {∞} is countably tight.
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Property (*) (*) in context

Examples of spaces having (∗)

Definition (Gruenhage, 1987)
A topological space X , card(X ) ≤ c, is Gruenhage if there are open
sets Un, n ∈ ℕ, such that if x , y ∈ X then {x , y} ∩ Un is a singleton for
some n.

Metrizable, �-discrete and descriptive compact spaces are
Gruenhage. The tree �ℚ is Gruenhage but not descriptive.

All Gruenhage spaces have (∗).

Theorem (Smith, 2009)
If K is Gruenhage compact then C(K )∗ admits a strictly convex dual
norm.
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Property (*) (*) in context

Examples of spaces having (∗)

Examples
Kunen’s compact S-space K is Gruenhage. In particular, C(K)∗

admits a strictly convex dual norm.
Ostaszewski’s space O is scattered but does not have (∗), thus
C(O)∗ does not admit a strictly convex dual norm.
Using CH or b = ℵ1, there exist compact non-Gruenhage spaces
having (∗), and with cardinality ℵ1.

Proposition
(MA) If L, card(L) < c, is locally compact, locally countable and has (∗)
then L is �-discrete (and thus Gruenhage).
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Property (*) (*) in context

Examples of spaces having (∗)

ZFC Example
There exists a locally compact non-Gruenhage space D having a
G�-diagonal.

D is a ‘duplicate’ Λ× {−1,1}, where Λ is Kurepa’s tree of injective
functions

t : � −→ ℕ

with ordinal domain and co-infinite range.

A Baire category argument can be used to show that D is
non-Gruenhage.
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Final remarks Problems

Problems

Problems
If K has (∗) then does C(K )∗ admit a strictly convex dual norm?
In particular, what if K = L ∪ {∞}, where L has a G�-diagonal?
If (BX∗ ,w∗) has (∗), does X ∗ admit a strictly convex dual norm?
What if X is also Asplund?
Is (∗) preserved by continuous images of compact spaces, or
more generally proper maps?
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