Strictly convex norms and topology

Richard Smith¹ (with José Orihuela and Stanimir Troyanski²)

¹University College Dublin, Ireland

²University of Murcia, Spain

New York Topology Conference, Summer 2011

J. Orihuela, R. J. Smith, S. Troyanski

Strictly convex norms and topology

July 2011 1 / 11

Strictly convex norms

Definition (Clarkson, 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

Natural norms are usually not strictly convex, but often a space can be given an *equivalent* strictly convex norm.

We concentrate on strictly convex dual norms on dual spaces.

Theorem (Šmulyan, 1940)

If $\|\cdot\|$ is a strictly convex *dual norm* on X^* then the predual $\|\cdot\|$ on X is Gâteaux smooth.

Strictly convex norms

Definition (Clarkson, 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $||x|| = ||y|| = \frac{1}{2} ||x + y||.$

Natural norms are usually not strictly convex, but often a space can be given an equivalent strictly convex norm.

Definition (Clarkson, 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

Natural norms are usually not strictly convex, but often a space can be given an *equivalent* strictly convex norm.

We concentrate on strictly convex *dual* norms on dual spaces.

Theorem (Šmulyan, 1940)

If $\|\cdot\|$ is a strictly convex *dual norm* on X^* then the predual $\|\cdot\|$ on X is Gâteaux smooth.

Definition (Clarkson, 1936)

A norm $\|\cdot\|$ is called *strictly convex* if x = y whenever $\|x\| = \|y\| = \frac{1}{2} \|x + y\|$.

Natural norms are usually not strictly convex, but often a space can be given an *equivalent* strictly convex norm.

We concentrate on strictly convex dual norms on dual spaces.

Theorem (Šmulyan, 1940)

If $\|\cdot\|$ is a strictly convex *dual norm* on X^* then the predual $\|\cdot\|$ on X is Gâteaux smooth.

Question

Given a (dual) Banach space, does it admit a strictly convex (dual) norm?

Yes if e.g. X is separable, reflexive (more generally weakly compactly generated) or if $X = L_1(\mu)$.

No if e.g. $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable.

Figures such as Day, Lindenstrauss, Mercourakis, Talagrand and Haydon have considered aspects of this question.

But no general characterization, in terms of linear topological structure, has emerged.

Question

Given a (dual) Banach space, does it admit a strictly convex (dual) norm?

Yes if e.g. X is separable, reflexive (more generally weakly compactly generated) or if $X = L_1(\mu)$.

No if e.g. $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable.

Figures such as Day, Lindenstrauss, Mercourakis, Talagrand and Haydon have considered aspects of this question.

But no general characterization, in terms of linear topological structure, has emerged.

Question

Given a (dual) Banach space, does it admit a strictly convex (dual) norm?

Yes if e.g. X is separable, reflexive (more generally weakly compactly generated) or if $X = L_1(\mu)$.

No if e.g. $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable.

Figures such as Day, Lindenstrauss, Mercourakis, Talagrand and Haydon have considered aspects of this question.

But no general characterization, in terms of linear topological structure, has emerged.

Question

Given a (dual) Banach space, does it admit a strictly convex (dual) norm?

Yes if e.g. X is separable, reflexive (more generally weakly compactly generated) or if $X = L_1(\mu)$.

No if e.g. $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable.

Figures such as Day, Lindenstrauss, Mercourakis, Talagrand and Haydon have considered aspects of this question.

But no general characterization, in terms of linear topological structure, has emerged.

Question

Given a (dual) Banach space, does it admit a strictly convex (dual) norm?

Yes if e.g. X is separable, reflexive (more generally weakly compactly generated) or if $X = L_1(\mu)$.

No if e.g. $X = \ell_{\infty}^{c}(\Gamma)$, Γ uncountable.

Figures such as Day, Lindenstrauss, Mercourakis, Talagrand and Haydon have considered aspects of this question.

But no general characterization, in terms of linear topological structure, has emerged.

Definition

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

• $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty

② ${x,y} \cap U$ is at most a singleton for all $U \in \mathscr{U}_n$.

Example

 $X = \mathbb{R}, \mathscr{U}_n = \{ \text{open intervals of length } n^{-1} \}.$

Spaces having G_{δ} -diagonals have (*).

There are many compact non-metrizable spaces having (*).

Definition

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty
- ② $\{x, y\}$ ∩ *U* is at most a singleton for all $U \in \mathscr{U}_n$.

Example

 $X = \mathbb{R}, \mathscr{U}_n = \{ \text{open intervals of length } n^{-1} \}.$

Spaces having G_{δ} -diagonals have (*).

There are many compact non-metrizable spaces having (*).

Definition

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_n$.

Example

$$X = \mathbb{R}, \mathscr{U}_n = \{ \text{open intervals of length } n^{-1} \}.$$

Spaces having G_{δ} -diagonals have (*).

There are many compact non-metrizable spaces having (*).

Definition

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_n$.

Example

 $X = \mathbb{R}, \mathscr{U}_n = \{ \text{open intervals of length } n^{-1} \}.$

Spaces having G_{δ} -diagonals have (*).

There are many compact non-metrizable spaces having (*).

Definition

A topological space X has (*) if there are families \mathscr{U}_n , $n \in \mathbb{N}$, of open sets, such that for any $x, y \in X$, there is $n \in \mathbb{N}$ satisfying

- $\{x, y\} \cap \bigcup \mathscr{U}_n$ is non-empty
- ② {x, y} ∩ U is at most a singleton for all $U \in \mathscr{U}_n$.

Example

 $X = \mathbb{R}, \mathscr{U}_n = \{ \text{open intervals of length } n^{-1} \}.$

Spaces having G_{δ} -diagonals have (*).

There are many compact non-metrizable spaces having (*).

Proposition

If a dual Banach space X^* admits a strictly convex *dual* norm, then (B_{X^*}, w^*) has (*).

Theorem

The space X^* admits a strictly convex dual norm if and only if (B_{X^*}, w^*) has (*) with slices.

Question

To what extent can we do without the geometry, i.e. without slices?

Proposition

If a dual Banach space X^* admits a strictly convex *dual* norm, then (B_{X^*}, w^*) has (*).

Theorem

The space X^* admits a strictly convex dual norm if and only if (B_{X^*}, w^*) has (*) with slices.

Question

To what extent can we do without the geometry, i.e. without slices?

Proposition

If a dual Banach space X^* admits a strictly convex *dual* norm, then (B_{X^*}, w^*) has (*).

Theorem

The space X^* admits a strictly convex dual norm if and only if (B_{X^*}, w^*) has (*) with slices.

Question

To what extent can we do without the geometry, i.e. without slices?

Consequences of (*)

We study C(K) spaces because they form a universal class: $X \hookrightarrow C(B_{X^*}, w^*).$

Theorem

If *K* is compact and scattered then $C(K)^*$ admits a strictly convex dual norm if and only if *K* has (*).

Theorem

- If X has (*) then X is fragmentable.
- Countably compact spaces having (*) are compact (generalizes Chaber). In particular, ω_1 does not have (*).
- If *L* is locally compact and has (*) then $L \cup \{\infty\}$ is countably tight.

Consequences of (*)

We study C(K) spaces because they form a universal class: $X \hookrightarrow C(B_{X^*}, w^*)$.

Theorem

If *K* is compact and scattered then $C(K)^*$ admits a strictly convex dual norm if and only if *K* has (*).

Theorem

- If X has (*) then X is fragmentable.
- Countably compact spaces having (*) are compact (generalizes Chaber). In particular, ω_1 does not have (*).
- If *L* is locally compact and has (*) then $L \cup \{\infty\}$ is countably tight.

Consequences of (*)

We study C(K) spaces because they form a universal class: $X \hookrightarrow C(B_{X^*}, w^*)$.

Theorem

If *K* is compact and scattered then $C(K)^*$ admits a strictly convex dual norm if and only if *K* has (*).

Theorem

- If X has (*) then X is fragmentable.
- Countably compact spaces having (*) are compact (generalizes Chaber). In particular, ω_1 does not have (*).
- If *L* is locally compact and has (*) then $L \cup \{\infty\}$ is countably tight.

Consequences of (*)

We study C(K) spaces because they form a universal class: $X \hookrightarrow C(B_{X^*}, w^*)$.

Theorem

If *K* is compact and scattered then $C(K)^*$ admits a strictly convex dual norm if and only if *K* has (*).

Theorem

- If X has (*) then X is fragmentable.
- Countably compact spaces having (*) are compact (generalizes Chaber). In particular, ω₁ does not have (*).

• If *L* is locally compact and has (*) then $L \cup \{\infty\}$ is countably tight.

Consequences of (*)

We study C(K) spaces because they form a universal class: $X \hookrightarrow C(B_{X^*}, w^*)$.

Theorem

If *K* is compact and scattered then $C(K)^*$ admits a strictly convex dual norm if and only if *K* has (*).

Theorem

- If X has (*) then X is fragmentable.
- Countably compact spaces having (*) are compact (generalizes Chaber). In particular, ω₁ does not have (*).
- If *L* is locally compact and has (*) then $L \cup \{\infty\}$ is countably tight.

Definition (Gruenhage, 1987)

A topological space X, $card(X) \le c$, is *Gruenhage* if there are open sets U_n , $n \in \mathbb{N}$, such that if $x, y \in X$ then $\{x, y\} \cap U_n$ is a singleton for some n.

Metrizable, σ -discrete and descriptive compact spaces are Gruenhage. The tree $\sigma \mathbb{Q}$ is Gruenhage but not descriptive.

All Gruenhage spaces have (*).

Theorem (Smith, 2009)

If K is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

Definition (Gruenhage, 1987)

A topological space X, $card(X) \le c$, is *Gruenhage* if there are open sets U_n , $n \in \mathbb{N}$, such that if $x, y \in X$ then $\{x, y\} \cap U_n$ is a singleton for some n.

Metrizable, σ -discrete and descriptive compact spaces are Gruenhage. The tree $\sigma \mathbb{Q}$ is Gruenhage but not descriptive.

All Gruenhage spaces have (*).

Theorem (Smith, 2009)

If K is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

Definition (Gruenhage, 1987)

A topological space X, $card(X) \le c$, is *Gruenhage* if there are open sets U_n , $n \in \mathbb{N}$, such that if $x, y \in X$ then $\{x, y\} \cap U_n$ is a singleton for some n.

Metrizable, σ -discrete and descriptive compact spaces are Gruenhage. The tree $\sigma \mathbb{Q}$ is Gruenhage but not descriptive.

All Gruenhage spaces have (*).

Theorem (Smith, 2009)

If K is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Gruenhage, 1987)

A topological space X, $card(X) \le c$, is *Gruenhage* if there are open sets U_n , $n \in \mathbb{N}$, such that if $x, y \in X$ then $\{x, y\} \cap U_n$ is a singleton for some n.

Metrizable, σ -discrete and descriptive compact spaces are Gruenhage. The tree $\sigma \mathbb{Q}$ is Gruenhage but not descriptive.

All Gruenhage spaces have (*).

Theorem (Smith, 2009)

If *K* is Gruenhage compact then $C(K)^*$ admits a strictly convex dual norm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples

Kunen's compact S-space K is Gruenhage. In particular, C(K)* admits a strictly convex dual norm.

- Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.
- Using CH or b = ℵ₁, there exist compact non-Gruenhage spaces having (*), and with cardinality ℵ₁.

Proposition

(MA) If L, card(L) < c, is locally compact, locally countable and has (*) then L is σ -discrete (and thus Gruenhage).

Examples

- Kunen's compact S-space K is Gruenhage. In particular, C(K)* admits a strictly convex dual norm.
- Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.
- Using CH or b = ℵ₁, there exist compact non-Gruenhage spaces having (*), and with cardinality ℵ₁.

Proposition

(MA) If L, card(L) < c, is locally compact, locally countable and has (*) then L is σ -discrete (and thus Gruenhage).

Examples

- Kunen's compact S-space K is Gruenhage. In particular, C(K)* admits a strictly convex dual norm.
- Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.
- Using CH or b = ℵ₁, there exist compact non-Gruenhage spaces having (*), and with cardinality ℵ₁.

Proposition

(MA) If L, card(L) < c, is locally compact, locally countable and has (*) then L is σ -discrete (and thus Gruenhage).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples

- Kunen's compact S-space K is Gruenhage. In particular, C(K)* admits a strictly convex dual norm.
- Ostaszewski's space O is scattered but does not have (*), thus C(O)* does not admit a strictly convex dual norm.
- Using CH or b = ℵ₁, there exist compact non-Gruenhage spaces having (*), and with cardinality ℵ₁.

Proposition

(MA) If *L*, card(L) < c, is locally compact, locally countable and has (*) then *L* is σ -discrete (and thus Gruenhage).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ZFC Example

There exists a locally compact non-Gruenhage space D having a G_{δ} -diagonal.

D is a 'duplicate' $\Lambda \times \{-1, 1\}$, where Λ is Kurepa's tree of injective functions

$$t: \alpha \longrightarrow \mathbb{N}$$

with ordinal domain and co-infinite range.

A Baire category argument can be used to show that *D* is non-Gruenhage.

ZFC Example

There exists a locally compact non-Gruenhage space D having a G_{δ} -diagonal.

D is a 'duplicate' $\Lambda \times \{-1,1\},$ where Λ is Kurepa's tree of injective functions

$$t: \alpha \longrightarrow \mathbb{N}$$

with ordinal domain and co-infinite range.

A Baire category argument can be used to show that *D* is non-Gruenhage.

ZFC Example

There exists a locally compact non-Gruenhage space D having a G_{δ} -diagonal.

D is a 'duplicate' $\Lambda \times \{-1,1\},$ where Λ is Kurepa's tree of injective functions

$$t: \alpha \longrightarrow \mathbb{N}$$

with ordinal domain and co-infinite range.

A Baire category argument can be used to show that *D* is non-Gruenhage.

Problems

Problems

- If K has (*) then does $C(K)^*$ admit a strictly convex dual norm?
- In particular, what if $K = L \cup \{\infty\}$, where L has a G_{δ} -diagonal?
- If (B_{X^*}, w^*) has (*), does X^* admit a strictly convex dual norm?
- Is (*) preserved by continuous images of compact spaces, or

Problems

Problems

- If K has (*) then does $C(K)^*$ admit a strictly convex dual norm?
- In particular, what if $K = L \cup \{\infty\}$, where L has a G_{δ} -diagonal?
- If (B_{X^*}, w^*) has (*), does X^* admit a strictly convex dual norm?
- Is (*) preserved by continuous images of compact spaces, or

Problems

Problems

- If K has (*) then does $C(K)^*$ admit a strictly convex dual norm?
- In particular, what if $K = L \cup \{\infty\}$, where L has a G_{δ} -diagonal?
- If (B_{X*}, w^{*}) has (*), does X^{*} admit a strictly convex dual norm? What if X is also Asplund?

Is (*) preserved by continuous images of compact spaces, or

A (10) A (10) A (10)

Problems

Problems

- If K has (*) then does $C(K)^*$ admit a strictly convex dual norm?
- In particular, what if $K = L \cup \{\infty\}$, where L has a G_{δ} -diagonal?
- If (B_{X*}, w^{*}) has (*), does X^{*} admit a strictly convex dual norm? What if X is also Asplund?
- Is (*) preserved by continuous images of compact spaces, or more generally proper maps?

References

- J. Orihuela, R. J. Smith and S. Troyanski, *Strictly convex norms and topology*, Proc. London Math. Soc (forthcoming).
- R. J. Smith, *Strictly convex norms, G_δ-diagonals and non-Gruenhage spaces*, Proc. Amer. Math. Soc. (forthcoming).

4 E 5